Polystyrene surface modification using excimer laser and radio-frequency plasma: blood compatibility evaluations
نویسندگان
چکیده
Biomaterial surface modification is an efficient method to improve and control blood component-material interactions. In the present study, two different methods (ArF excimer laser irradiation and radio-frequency (RF) plasma treatment) were applied in separate procedures to create a vast range of physicochemical characteristics on the surface of polystyrene (PS) and investigate their effects on blood compatibility of treated surfaces. Atomic force microscopy (AFM) and Fourier transmission infrared analysis were applied to study the morphology and chemical characteristics of treated samples in comparison with those of the untreated PS. Contact angle and surface tension measurements with two different solvents were used to evaluate the wettability and surface energy of the treated PS films. The effect of the physicochemical properties of the PS surface on blood compatibility was investigated using lactate dehydrogenase (LDH) method. AFM studies showed that after laser treatment, some distinctive nanostructures are created on the surface of PS. The data from contact angle measurements demonstrated that ArF excimer laser irradiation and RF plasma treatment created surfaces with a vast range of properties in the wettability point of view. The LDH results revealed that after surface modification by laser irradiation and plasma treatment, blood compatibility of PS films was enhanced. In addition, these results offered that the most blood compatible samples were those which irradiated with 5 pulses of laser and the one treated 4 minutes in oxygen plasma.
منابع مشابه
Surface Modification by EUV laser Beam based on Capillary Discharge
Many applications require surface modification and micro-structuring of polymers. For these purposes is mainly used ultraviolet (UV) radiation from excimer lamps or excimer lasers. However, these sources have a decided disadvantage degrading the polymer deep inside due to relatively big radiation penetration depth which may exceed 100 μm. In contrast, extreme ultraviolet (EUV) radiation is abso...
متن کاملSurface Modification of Silicone Rubber Membrane by Microwave Discharge to Improve Biocompatibility
Wetability of biocompatible polymers can be improved by plasma surface modification. The purpose of this study was to surface modify an experimental poly (dimethylsiloxane) rubber (PDMS) material in order to improve its wetability and biocompatibility. Surface properties of the PDMS were characterized using contact angles measurement for wetability analysis. Samples of experimental silico...
متن کاملMorphological, structural and photoresponse characterization of ZnO nanostructure films deposited on plasma etched silicon substrates
ZnO nanostructure films were deposited by radio frequency (RF) magnetron sputtering on etched silicon (100) substrates using dry Ar/SF6 plasma, at two etching times of 5 min and 30 min, and on non etched silicon surface. Energy dispersive X-ray (EDX) technique was employed to investigate the elements contents for etched substrates as well as ZnO films, where it is found to be stoichiometric. Su...
متن کاملMeasurement of polystyrene nanospheres using excimer laser fragmentation fluorescence spectroscopy.
Monodisperse polystyrene nanospheres with a mean diameter of 102 nm are photofragmented with 193 nm light in N2 at laser fluences from 1 to 20 J/cm2. Carbon atom fluorescence at 248 nm from the disintegration of the particles is used as a signature of the polystyrene. The normalized fluorescence signals are self-similar with an exponential decay lifetime of approximately 10 ns. At fluences abov...
متن کاملLaser surface modification of hydroxyapatite and glass-reinforced hydroxyapatite.
Surface treatment of materials with excimer laser radiation often results in the formation of a rough columnar or cone-shaped surface topography, which leads to a considerable increase in the surface area. As a result, the search for a non-porous bioactive material with adequate mechanical properties and a high surface to volume ratio, similar to porous materials, which could be used for drug d...
متن کامل